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ABSTRACT

Two enabling technologies for envisioned tactical
network systems are mobile ad hoc network (MANET)
routing and collaborative Multiagent Systems (MAS).
Despite their respective technical value in enabling
more distributed, autonomous networking, open
research and engineering questions remain regarding
robust interoperation, standardization, and design of
these two technologies. Little work has been done to date
to examine the interaction and performance of
distributed agent designs within MANET environments.
This paper examines the interactions and effects of
running a team of Belief-Desire-Intention (BDI) agents
within a wireless network using emerging MANET
protocol frameworks. The focus of the interagent
communication model applied in this study is a form of
MANET multicast routing and is aimed at improving
group-based agent collaboration. The developed
simulation testing environment is specified and results
from various experiments are discussed. We present
recent results examining overall MAS task performance
vs. related knowledge loss induced by the underlying
MANET network disruptions. We conclude by outlining
several open issues and areas of further work.

INTRODUCTION

The fundamental goal of our work was to perform
research and develop solutions to enable more robust
Multiagent Systems (MAS) designs for Mobile Ad hoc
Network (MANET) environments. This report
documents recent design, modeling, and experimental
results in researching a combined MAS and MANET
system. Our previous related earlier work has been
documented in other publications [MCDAO6]. We also
provide a summary of project developments, test tools,
lessons learned, and a future work direction perspective.
It is our hope that the research tools, methods, and early
lessons learned developed under this work will stimulate
further cross disciplinary research in multiagent systems
and dynamic, mobile wireless networks an area ripe for
further exploration.

RATIONALE

DoD is planning to deploy MANET type network
technology at the battlespace forward edge and within
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the "the first tactical mile". There is dso early
deployment of agent-based systems occurring with more
extensive future deployment envisioned by the joint
services. Previous design work done with MAS
networking has often assumed benign network behavior
and highly stable infrastructures not MANET
environments [WO02]. Technical challenges of our work
involved tackling cross-disciplinary issues of dynamic
network protocol and multiagent system design
[CDCPO5]. At present, there remains a limited
understanding of appropriate architectura design
tradeoffs in adapting network communication services
and MAS models in these more challenging
environments.

Before we discuss the particulars, it is important to
frame our understanding of agent systems in some
concrete way. To scope our work, we have adopted basic
descriptions and properties defined by Woolridge and
Jennings [WJ95]. Their discussions and definitions have
helped refine our notion of rational agents and as an
extension have better defined rational multiagent
systems. Using their arguments and definitions,
reference agents are not seen as disembodied systems,
but rather are required to be situated within some
environment. Agents aso have the ability to sense their
environment in some way and perform actions in order
to modify the environment. In their definition, agents
and agent systems are action-oriented. A smplified view
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Figure 1: Agent Interactions

Action output

of agent and environment interaction is shown in Figure
1

[W02] aso discusses agents as exhibiting the following
properties:
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autonomy;
proactiveness;
reactivity; and
social ability.

We were interested in examining these same
fundamental properties and related performanceissuesin
dynamic ad hoc wireless network environments.

The social feature of arational agent is a key component
of MAS. As in human societies, communications is a
critic enabler in cooperating and collecting
environmental awareness beyond local or individual self
interests. This is especially true when considering group
communications. A major chalenge is that within
MANET environments more efficient and reliable group
communication constructs are till evolving. We believe
we have improved this situation by applying emerging
MANET multicasting techniques in this work. Although
our hypothesis is that such network enhancements
improve dynamic MAS collaboration capabilities,
relevant MAS designs must continue to deal with more
network disruption events regardless of overall protocol
improvements. We shall also see that the very nature of
agent environmental reaction involving motion
contributes to particular types of network disruption that
may affect specific MAS design components.
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Figure 2: MAS Interactions

Figure 2 is a more detailed rational agent model relating
to our MAS/MANET research model with richer
environment interactions. In this revised version of
Figure 1, sensor input is received by the agent from two
logical sources: the agent local sensor system, and also
from shared data input from other agents. The other
agents are embedded within the MAS environment as
well and are part of the individual agent environment
view and interaction. Other related collaborative
information is also part of the input and output of each
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agent process.

From a software engineering perspective, we focus on
the Belief-Desire-Intention (BDI) model for our rational
agents as discussed [W02]. We relate a number of our
findings as lessons learned or pertinent issues for
implementing BDI agent designs within dynamic ad hoc
networks. Examples include the importance of intention
persistence and also the need to carefully examine belief
revision cycle processing in terms of network robustness
and disruption assumptions. The belief revision cycle
includes the time and means by which agents update
their beliefs about their environment. In dynamic
environments with disruption this cycle becomes a
vulnerable design component. The problem is analogous
to the “fog of war” syndrome.

MANET BACKGROUND

The goal of MANET routing is to provide enhanced IP
routing for wireless networks, especialy those that are
possibly mobile or highly dynamic. There are numerous
documented operational factors that significantly
distinguish maobile, wireless networks from fixed wired
networks such as the following [MC99]:

o Nominaly lower capacity than wired networks.
e More frequent topologica changes.
¢ Increased and unpredictable loss events.

When we began related work on agent system design in
MANET around 2003, there was significant research
progress in MANET unicast routing protocols but there
remained a technology gap in effective MANET
multicasting solutions. Throughout this effort we applied
emerging work being done in multicast forwarding for
MANET [MO08]. The effective network collaborative
needs of a MAS match well with the multicasting model
and we believe thisis an important step forward in MAS
design support for MANET.

SIMULATION MODELSAND PARAMETERS

In recent MAS-MANET work, we have established a
predator/prey agent scenario model to examine the
interaction between agent and MANET performance. In
our model, predator agent nodes have a group task to
capture a set of prey target nodes. Multiple agent nodes
are required to capture a target prey, introducing the
concept of teamwork within the MAS design. This
model was chosen in part because successful task
completion required agent mobility that dynamically
influences communication and network reliability.



Within our model, agent nodes had a maximum vel ocity
and limited sensor and communication ranges. Within all
simulations velocity and sensor limitations remained
constant, while maximum communication range varied
per scenario. Communication between agent nodes
consisted of signaling for team allocation and
coordination, sharing of individua agent intention, and
dissemination of other shared environment knowledge.
Dissemination of agent intention allowed agents to de-
conflict ineffective or conflicting team assignments.

Target nodes were not equipped with communication
capabilities and no coordinated system was implemented
in opposition to the predator agent goal. Targets would
however attempt to escape known agent nodes by
moving away from the closest known predator agent
within their environment awareness area. This
movement introduced changes in the environment
making communication between agents potentialy more
meaningful. For results presented here, agents were
required to work in teams of four to successfully
complete a capturing task. To perform dynamic role
allocation we adapted an iterative distributed constraint
optimization approach based upon the Hungarian
algorithm [MDCO04]. To minimize role oscillation we
introduced a cost for switching roles. We also included a
predictive inference method to allow for additional “look
ahead” task capability. Predictive inference
demonstrated longer short term task completion rates
while shortening overall task completion times.

The ns2 smulation environment was used for these
experiments with the addition of an NRL environment
channel extenson for smulating preys and external
environment sensor data. We aso applied the NRL
AgentJ toolkit [ADMTO06] to allow native java-based
agent code to execute within the ns2 environment as
application agents. In the experiment to be discussed, 8
agent and 8 target nodes were placed within a 900m x
900m size area. Within the hybrid grid scenarios, 9 static
non-MAS relay nodes were placed to provide supportive
network relay coverage. Agent nodes were given a
maximum speed of 5.1 mps. To alow agent nodes to
capture targets, targets were given a slower maximum
speed of 1.1 mps. Target nodes would only move away
from known agent nodes within a given sensor range and
would otherwise remain stationary.

Simulations described here used the same sensor range
settings. Agent sensor ranges used were omni-directional
with a maximum distance of 20 meters. Omni-
directional sensors with a max range of eight meters
were used for the target nodes. To better control
topology and connectivity, maximum communication
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range of agent nodes varied between 60 meters and 400
meters. For a given simulation run, communication
range was homogenous and constant for all agents. The
ranges can be viewed as relative ranges and were mainly
used to control network neighborhood density
probabilities. Using repeatable initial random node
placement alowed for direct comparison of task
completion time amongst different settings. In addition,
agents and prey nodes are initiated without knowledge of
other agent or target positions.

An NRL adaptation of the OLSR protocol, NRLOL SR,
was used in conjunction with an NRL SMF
implementation [PF] for routing multicast packets within
the ns2 network simulation. Although multiple flooding
cover set agorithms were used including the following:
Classic, E-CDS, and SSMPR. The resultsin Test Sets A
and B were based upon S-MPR based SMF forwarding.
While the multicast results are limited in scope, due to
the small network size limitations, we have examined
the robustness of the different forwarding algorithmsin a
previous study [MDDAOQ7].

SIMULATION EXPERIMENTS

We designed two sets of simulation scenarios: the first to
examine MAS performance under congestion/contention
conditions, and the second to examine network
partitioning effects.

TEST SET A: PERFORMANCE WITH TRAFFIC
LOADING

To peform a set of tests with minimal network
partitioning, a scenario was designed with nine statically
placed relay nodes. These relay nodes did not have role
allocation agent functionality but participated in the
MANET network solely as available forwarding nodes.
They nodes ran the same SMF forwarding protocol
(based upon S-MPR) and provided full grid area
coverage. An example of the coverage and resultant
starting network layout is given with and without
statically placed relay nodesin Figures 3a and 3b.

Figure 3a/b: Coverage Examplesin Test A



For a given simulation, additional extraneous multicast
traffic was sourced into the network at each agent node.
This additional loading competed against MANET
routing protocol and agent communication traffic for
network resources. Nine different initial layouts were
randomly selected for the agent and target nodes and
these layouts remained constant for each set of
simulation runs while traffic overhead was increased
over a set of trials. Figure 4 shows the simulation time
required by the MAS to capture all target nodes for each
run layout as network load increases. It is interesting to
note that higher amounts of network traffic generally
increased simulation completion times but not
consistently. The variance in task completion time also
increases as the amount of traffic increases. All
simulations finished well within the 2400 seconds
maximum allotted time.

Performance vs Congestion/Contention
(S-MPR)
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Figure4: Task Completion vs. Loading

Agents Known vs Congestion/Contention
(S-MPR)

100

80

H

60

Agents Known
(Average % known per Agent)

40

LIt

20

0 10 20 30 40 50
# of Extra Multicast Packets
Sourced per Agent

Figure5: Agent Knowledge vs. L oading

Figure 5 shows the effect increased network loading has
on agent knowledge with regards to other agents. The
amount of knowledge about other collaborative agents
drops off quite rapidly as the network becomes highly
loaded but rate of decrease slows as the network
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becomes further saturated. Regardless of the initia
starting layout the amount of peer knowledge loss
relative to increasing network load remained quite
stable.

Some interesting observations emerge when taking a
look at average MAS performance. With only one packet
per second per node overhead, agents know on average
86% of their peers and complete the capturing tasks in
an average of 547 seconds. With traffic set to 15 packets
per second per node overhead, agents know on average
38% of their peers yet task completion time only
increased an average of 5.7% to 578 seconds. At first
glance one would expect a greater impact on
performance with this amount of information loss. At the
highest level of congestion we tested, 50 packets per
second per node, agents on average know 19% of their
peers, and average simulation time increased to 843
seconds. These results at first seem non-intuitive with
performance degradation less correlated with decreasing
peer agent knowledge, but we feel this is explained by
the agent persistence and the nature of the loss events as
we will show later.

TEST SET B: PERFORMANCE WITH LIMITED
RANGE

To explore how MAS performance might degrade due to
information loss caused by network partitioning events
we ran simulations with varying communication ranges.
These tests used the parameters and procedures as the
previous tests; however, no fixed relay nodes were used
since we are interested in examining network
partitioning and coalescing conditions. Communication
ranges were varied from 60-400m at 25m intervals.
Figures 6a and 6b shows the resultant network
connectivity at 300m and 150m communication ranges.

Figures 6a/b: Connectivity Graphsvs. Range

Figure 7 shows the MAS task completion time for each
decreasing network communication range. Compared to
the traffic loading experiments, the trend analysis shows
increased variance in completion times between initia



layouts and runs with differing communication ranges.
The effect of network partitioning induced knowledge
loss on MAS task completion time becomes quite severe
at the lower tested ranges, 200m and below.

As fragmentation becomes excessive below 150m, not
al MAS simulations completed capture tasks within the
allotted time. We found that by increasing the allowable
simulation time by a factor of 10, many of these
simulations still did not fully capture all target nodes.
The network would fragment so severely that formation
of teams, given our current agent design, would never
occur. Because of this only simulation runs which
completed within the 2400 seconds are plotted. The
trend lines of each run stops at the last completed
simulation.

Figure 8 shows the average known peer agents for each
simulation run. Average peer knowledge levels were
plotted for all runs, including simulations in which the
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Figure 7. Task Completion vs. Comm Range
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Figure 8: Agent Knowledge vs. Comm Range

MAS did not fully complete the task. The drop off in
peer knowledge as communication range decreases
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follows a more linear trend when compared to the
knowledge loss due to congestion/contention, as shown
in figure 5. There is also much more variance than was
exhibited by the congestion/contention model.

Taking a few average values across al 8 trials we find
the following. At a 400m range, agents know on average
82% of their peers and take an average of 623 secondsto
capture all targets. The time of 623 seconds differs from
the fully connected congestion test with the least amount
of overhead because the network did not remain fully
connected throughout; the differing initial agent layouts
also make direct comparison impossible. At a 225m
range, agents know of an average of 53% of their peers
but completion time is 1040 secs, or 67% longer than
400m. At 150m, agents knew 38% of their peers and
task completion took 1239 seconds, amost twice as long
as the initial average. This contrasts quite starkly with
the 5.7% increase of simulation time measured at 38%
known peers in the congestion/contention tests. As
previoudy stated, not al simulations would converge to
a solution, even given an infinite amount of time, using
the smaller communication ranges, but an average of
23% of peers were known by agents with only 60m
range.

LOSSCHARACTERISTIC ANALYSIS

We were curious why the general task completion trends
differed so drasticaly when comparing traffic loading
versus network partitioning induced information loss, so
we examined further details of the loss properties.
Figures 9 and 10 illustrate the patterns of loss, of two
sample nodes with the same average knowledge values,
resulting from Test Sets A and B.
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Figure 9: Loss Patternsat 28% Peer Knowledge

Traffic congestion induced random loss is clearly more
temporally uniform while range limited loss is bursty in
nature. This makes some intuitive sense since network
partitioning causes periods in which a substantial



amount of information loss would occur. With the
congestion loss example, a percentage of source packets
are received even during significant periods of loss.
Since agents have some short term memory of the
environment and role persistence this has less of an
effect on cooperative behavior. We feel that this
fundamental difference in network disruption types is a
main factor in differing MAS-MANET performance
characteristics and represents an important consideration
in related MAS design. The nature of the environment
and data persistence here directly affects the outcome of
different types of tempora disruption emphasizing the
need for more accurate modeling of such systems.
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Figure 10: Loss Patternsat 78% Peer Knowledge

GENERAL EXPERIMENTAL OBSERVATIONS

During the course of simulating MAS strategies within
MANET scenarios, we noticed significant variance
across multiple trials. A cross dependency exists
between  cooperative  agents  and MANET
communication approaches in our model. The network
protocol approach had a significant effect on an agent
systems belief revision cycle if that cycle relies on
collaborative networking. The agents through their
motion and communications aso affect the network
topology in turn affecting the amount/quality of
information available throughout the agent system. For
example, agent intentions to capture a specific target can
cause a change in their location. This change in location
affects the properties of the MANET network, in turn
potentially causing a change in the agent’s beliefs and
intentions. This property helps explains why less agent
information does not always result in longer simulation
times or the converse that more information did not
always result in shorter smulation times. For specific
scenarios it can be difficult to determine if more or less
network communication results in better system wide
performance. However, some general trends do emerge.
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GENERAL TREND ANALYSIS

Two differing methods of introducing network
disruption: congestion and range limitation both caused
longer task completion times with higher levels of
information loss. The magnitude of the effect of this
knowledge loss differed with the two methods. Figure 11
plots agent task completion, one point per simulation
run, as afunction of the amount of average percentage of
the known environment. The known environment
percentage for an agent is defined as the number of
known agent and target locations, divided by the sum of
all nodes. The percent of known environment plotted is
the average known environment for all agents for one
simulation. This value is the expected amount of
information a random agent would have at a randomly
selected time for a specific simulation run. A linear fit
was added to the sets of simulation data to illustrate the
difference in performance degradation with similar
average loss knowledge. The differing patterns of loss
information had a significant effect on system wide
agent performance, with network partitioning losses
being roughly twice as detrimental as congestion based
losses. With higher levels of environment information
loss (>60%) the network partitioning caused even more
severe effects to performance when compared to
congestion/contention, with some simulations entering
states that never compl eted.
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Figure 11: Performancevs. % Knowledge Metric

ADDITIONAL WORK

Due to the importance of maintaining network
connectivity in multiagent systems, we have begun the
development of MANET aware agents that include a
network role along with other environmenta roles. For
our initial tests these “smart relay” agents used a
modified attract/repel algorithm to attempt to self-
organize a self-electing coverage strategy to minimize
network fragmentation. We adopted the limited radio
range simulation tests previoudly discussed but this time



we added a set of intelligent mobile relay agents. Figure
12 shows the average simulation time as the range
increases on the x axis and the number of relay agentsis
reduced on the y axis. The same parameters in the earlier
network partitioning tests were used for these simulation
runs with the exception of the additional relay agents.

The general trend demonstrates that additional smart
relay agents decreased task completion time across all
the communications ranges we tested. We did not
thoroughly examine the effect of having a more
sophisticated network role agent capability on a larger
scale and more work is warranted. However, these initial
results are encouraging and point the potential benefits
from further work.

CONCLUSIONS

We developed and presented novel models that are
enabling joint MAS and MANET research to be carried
out. We demonstrated improved MAS interagent
communications within MANET by applying emerging
multicast forwarding capabilities. We aso presented a
set of experiments examining disruption effects in a
MAS-MANET design environment.
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Figure 12: Smart Relay Agentsand Task
Effectiveness

We demonstrated that differing types of network
disruption at the same average loss rates affected agent
system performance in fundamentally different ways.
Our MAS model dedlt with the randomized loss of
congestion/contention in a rather robust way due to short
term memory and role allocation persistence. Losses
caused by partitioning due to limited communication
range were bursty and caused about twice the amount of
agent performance degradation for the same average
loss. We conclude that for examining MAS performance
within a MANET environment random loss or
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congestion studies alone are not sufficient for modeling
system wide performance. Introduction of bursty
correlated information loss is critical to examine red
world system effects such as network partitioning.
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